

Outline

- Intro to Ultra-cold Matter
 - → What is it ?
 - → How do you make it?
 - → Bose-Einstein Condensates

- Physics with ultra-cold matter
 - → Microwave traps for atom interferometry

How cold is Ultra-Cold?

1000 K

mK

 μK

nK

[priceofoil.org, 2008]

Antarctica, ~ 200 K

Dilution refrigerator, ~ 2 mK

Ultra-cold quantum temperatures

What's Ultra-Cold Matter?

mK

μK

nK

Very Cold

- → Typically nanoKelvin microKelvin
- → Atoms/particles have velocity ~ mm/s cm/s

Very Dense ... in Phase Space

Ultra-cold Quantum Mechanics

Quantum mechanics requires

$$\Delta x \cdot \Delta p \ge \hbar/2$$

→ fundamental unit of phase space volume

$$\Delta \mathbf{x} \cdot \Delta \mathbf{p} = \hbar/2$$

→ Quantum physics is important when PSD ~ 1

Equivalent:

deBroglie wavelength ~ inter-particle separation

$$n\lambda_{deBroglie} \sim 1$$

Boltzmann régime

Quantum Statistics

Bosons

- > **symmetric** multi-particle wavefunction.
- Integer spin: photons, ⁸⁷Rb.
- ➤ probability of occupying a state |i> with energy E_i.

$$P(E_i) \propto \frac{1}{e^{(E_i - \mu)/kT} - 1}$$

Fermions

- > **anti-symmetric** multi-particle wavefunction.
- → ½-integer spin: electrons, protons, neutrons, ⁴⁰K.
- probability of occupying a state |i> with energy E_i.

$$P(E_i) \propto rac{1}{e^{(E_i - \mu)/kT} + 1}$$

How do you make ULTRA-COLD matter?

Two step process:

- 1. Laser cooling
 - Doppler cooling
 - Magneto-Optical Trap (MOT)

- 2. Evaporative cooling
 - Magnetic traps
 - RF Evaporation

Doppler Cooling

Lab frame

Atom's frame

Lab frame, after absorption

Magneto-Optical Trap (MOT)

Problem:

Doppler cooling reduces momentum spread of atoms only.

- → Similar to a damping or friction force.
- → Does not reduce spatial spread.
- → Does not confine the atoms.

Solution:

Spatially tune the laser-atom detuning with the Zeeman shift from a spatially varying magnetic field.

Magneto-Optical Trap (MOT)

Magneto-Optical Trap (MOT)

BEC Apparatus

Magnetic Traps

Interaction between external magnetic field and atomic magnetic moment:

$$U = -\vec{\mu} \cdot \vec{B}$$

For an atom in the hyperfine state $|F,m_F\rangle$

$$\cos\theta = m_F / F$$

$$\cos\theta = m_F / F \implies U = g_F m_F \mu_B |\vec{B}|$$

Energy = minimum

Micro-magnetic Traps

Advantages of "atom" chips:

- Very tight confinement.
- Fast evaporation time.
- photo-lithographic production.
- Integration of complex trapping potentials.
- ➤ Integration of RF, microwave, and optical elements.
- Single vacuum chamber apparatus.

Evaporative Cooling

Wait time is given by the elastic collision rate $k_{elastic} = n \sigma v$

Macro-trap: low initial density, evaporation time ~ 10-30 s.

Micro-trap: high initial density, evaporation time ~ 1-2 s.

Sweep RF "knife" from 20 MHz to 3 MHz.

Evaporative Cooling

Wait time is given by the elastic collision rate $k_{elastic} = n \sigma v$

Macro-trap: low initial density, evaporation time ~ 10-30 s.

Micro-trap: high initial density, evaporation time ~ 1-2 s.

Sweep RF "knife" from 20 MHz to 3 MHz.

Bose-Einstein Condensation of 87Rb

It's Quantum!

Bragg diffraction of a BEC by an <u>accidental</u> optical lattice grating (not visible).

BEC is a debugging tool.

- → quantum mechanics comes looking for you !!!
- → "Canary" for experimental imperfections.

What's Special about Ultra-cold Atoms?

Extreme Control:

- Perfect knowledge (T=0).
- Precision external and internal control with magnetic, electric, and electromagnetic fields.

Interactions:

- Tunable interactions between atoms with a magnetic Feshbach resonance.
- Slow dynamics for imaging.

Narrow internal energy levels:

- Energy resolution of internal levels at the 1 part per 109 1017 level.
- 100+ years of spectroscopy.
- Frequency measurements at 10³-10¹⁴ Hz.
- Ab initio calculable internal structure.

So What?

What can you do with ultra-cold atoms?

Larger ultra-cold quantum systems:

- Condensed matter physics: many-body systems
- Ultra-cold chemistry

Probe fundamental forces inside the atom:

- Electron-dipole moment measurements
- Parity violation in atoms and molecules
- ➤ Test the Standard Model, nuclear physics

Applied Physics:

- Atomic clocks
- Matter-wave interferometry
- Quantum sensors
- Quantum Information

Microwave Traps

Outline

- Intro to Ultra-cold Matter
 - → What is it?
 - → How do you make it ?
 - **→** Bose-Einstein Condensates

- Physics with ultra-cold matter
 - → Microwave traps for atom interferometry

Atom Interferometry

Atom Interferometry

- Most sensitive interferometers and force sensors.
 - \rightarrow free-flight laser pulse interferometers: $\frac{\Delta g}{g} = 10^{-11}$ in 1 s (10 m tower).
 - → Single particle physics.
- Sensitive to magnetic, electric, and gravitational forces.
- Excellent for inertial navigation.
- Drawbacks: Large apparatus, large sensing region.

Trapped Atom Interferometry

Trapped Atom Interferometry

- Long integration times
 - → increased phase sensitivity, linear in time.
- Localized atomic packets ... potentially compact.
 - → fixed position, well controlled volume.
 - → microscopy: Casimir-Polder force & sub-mm gravity measurements.
- Bose-Einstein condensates have excellent coherence.
- Drawback: sensitive to atom-atom interactions.

Fermion advantage

Ultracold fermions have strongly suppressed interactions.

→ Ultracold fermions are used in optical clocks.

Spin-dependent Interferometer

Opposite spins experience same potential, but shifted in opposite directions

→ Each level/state acquires the same splitting phase.

- Equivalent to a polarization Mach-Zender interferometer.
- Essentially, an atomic clock with spatially separated clock states.

Spin-dependent Interferometry

interferometer phase-signal: $\Delta \varphi = \Delta T (\delta E_{\uparrow\downarrow} + \Delta E)/\hbar$

interferometer noise: $\delta \varphi \sim 1/\sqrt{N_{atoms}}$

 ΔT = integration time

 $\delta E_{\uparrow\downarrow}$ = hyperfine splitting

Spin-dependent AC Zeeman Traps

- AC Zeeman Theory
- Microwave force experiment
- > RF trap experiment

Benefits of

AC Zeeman Potentials

- Easy physics !!! ... easy-ish engineering.
- > Spin-specific potentials ... for any spin !!!
- No spontaneous emission.
- Physics works at all magnetic fields.
 - → Feshbach resonances.
- > Atom chip potential roughness is reduced.
 - → Orders of magnitude suppression.

AC Zeeman Theory

Simple Theory

M1 transition amplitude (Rabi frequency):

$$\Omega = \frac{\left\langle g \left| H_{Zeeman} \right| e \right\rangle}{\hbar} = \frac{\left\langle g \left| -\vec{\mu} \cdot \vec{B}_{AC} \right| e \right\rangle}{\hbar}$$

with magnetic moment: $ec{\mu}=(2\mu_{\scriptscriptstyle B}/\hbar)ec{S}$

AC Zeeman Theory

Simple Theory

M1 transition amplitude (Rabi frequency):

$$\Omega = \frac{\langle g | H_{Zeeman} | e \rangle}{\hbar} = \frac{\langle g | -\vec{\mu} \cdot \vec{B}_{AC} | e \rangle}{\hbar}$$

with magnetic moment: $ec{\mu}=(2\mu_{\scriptscriptstyle B}/\hbar)ec{S}$

dressed atom basis:
$$\{|g,N\rangle,|e,N-1\rangle\}$$
 atom in |g>, N RF-photons — atom in |e>, N-1 RF-photons

AC Zeeman Hamiltonian:
$$H=\hbar\omega_{ge}\begin{bmatrix}0&0\\0&1\end{bmatrix}+\hbar\omega_{rf}\begin{bmatrix}N&0\\0&N\!-\!1\end{bmatrix}$$

$$H_{atom}$$
 $H_{RF\text{-}field}$

dressed atom basis:
$$\{|g,N\rangle,|e,N-1\rangle\}$$
 atom in |g>, N RF-photons — atom in |e>, N-1 RF-photons

AC Zeeman Hamiltonian:
$$H=\hbar\omega_{ge}\begin{bmatrix}0&0\\0&1\end{bmatrix}+\hbar\omega_{rf}\begin{bmatrix}N&0\\0&N-1\end{bmatrix}$$

$$H_{atom}\qquad H_{RF\text{-}field}$$

dressed atom basis:
$$\{|g,N\rangle,|e,N-1\rangle\}$$
 atom in |g>, N RF-photons — atom in |e>, N-1 RF-photons

AC Zeeman Hamiltonian:
$$H=\hbar\omega_{ge}\begin{bmatrix}0&0\\0&1\end{bmatrix}+\hbar\omega_{rf}\begin{bmatrix}N&0\\0&N-1\end{bmatrix}+\frac{\hbar}{2}\begin{bmatrix}0&\Omega\\\Omega^*&0\end{bmatrix}$$
 H_{atom} $H_{RF-field}$ $H_{interaction}$

dressed atom basis:
$$\{|g,N\rangle,|e,N-1\rangle\}$$
 atom in |g>, N RF-photons — atom in |e>, N-1 RF-photons

AC Zeeman Hamiltonian:
$$H=\hbar\omega_{ge}\begin{bmatrix}0&0\\0&1\end{bmatrix}+\hbar\omega_{rf}\begin{bmatrix}N&0\\0&N-1\end{bmatrix}+\frac{\hbar}{2}\begin{bmatrix}0&\Omega\\\Omega^*&0\end{bmatrix}$$
 H_{atom} $H_{RF-field}$ $H_{interaction}$

dressed atom basis:
$$\{|g,N\rangle,|e,N-1\rangle\}$$
 atom in |g>, N RF-photons — atom in |e>, N-1 RF-photons

AC Zeeman Hamiltonian:
$$H=\hbar\omega_{ge}\begin{bmatrix}0&0\\0&1\end{bmatrix}+\hbar\omega_{rf}\begin{bmatrix}N&0\\0&N\!-\!1\end{bmatrix}+\frac{\hbar}{2}\begin{bmatrix}0&\Omega\\\Omega^*&0\end{bmatrix}$$

$$H_{atom} \qquad H_{RF\text{-}field} \qquad H_{interaction}$$

AC Zeeman Transitions

[87Rb, 39K, 41K]

[@ Low Magnetic Field]

EXPERIMENT: Atom Chip Set-up

AC Zeeman Force

Fancher, Pyle, Rotunno, Aubin, Phys. Rev. A 97, 043430 (2018)

Spin-Specific Force

Application

Quantum Gate

- Spin states can serve as qbit states.
- A spin-dependent force selectively controls one or more qbits based on their quantum states.

Microwave Trap Design

Microwave near-fields have the same form as static fields.

- → NO wavelength dependence.
- → Large gradients at moderate power (<10 W) and currents (< 1 A).</p>

Microwaves at 6.8 GHz

- detuning $\delta = 2\pi \times 1$ MHz
- trap depth = 15 µK
- trap height = 93 µm

Microwave Atom Chip

Design

✓ Microstrip-based design

✓ 50 Ω microstrips

RF AC Zeeman Physics

intra-hyperfine transitions

$$\begin{split} \hbar\Omega_{eg} &= \langle e| - \mu \cdot B_{RF} |g\rangle \\ &= \frac{\mu_B g_S}{\hbar} \langle e| \frac{S_+ B_-}{2} + \frac{S_- B_+}{2} + S_\pi B_z |g\rangle \end{split}$$

with
$$B_{\pm} = B_{\chi} \pm i B_{y}$$
 (circularly polarized RF field)

RF AC Zeeman Physics

intra-hyperfine transitions

$$\hbar\Omega_{eg} = \langle e| - \mu \cdot B_{RF} | g \rangle$$

$$= \frac{\mu_B g_S}{\hbar} \langle e| \frac{S_+ B_-}{2} + \frac{S_- B_+}{2} + S_\pi B_z | g \rangle$$

with
$$B_{\pm} = B_x \pm i B_y$$
 (circularly polarized RF field)

RF AC Zeeman Physics

intra-hyperfine transitions

Applied RF (MHz)

Applied RF (MHz)

How to make a σ⁺/B_ trap

$$\hbar\Omega_{eg} = \frac{\mu_B g_S}{2\hbar} \langle e | S_+ B_- | g \rangle$$

- Phase control in two wires
- Pure B+ polarization
 - → Zero in B- polarization
- Adjust phase to move

How to make a σ⁺/B_ trap

$$\hbar\Omega_{eg} = \frac{\mu_B g_S}{2\hbar} \langle e | S_+ B_- | g \rangle$$

- Phase control in two wires
- Pure B+ polarization
 - → Zero in B- polarization
- Adjust phase to move

How to make a σ⁺/B_ trap

$$\hbar\Omega_{eg} = \frac{\mu_B g_S}{2\hbar} \langle e | S_+ B_- | g \rangle$$

- Phase control in two wires
- Pure B+ polarization
 - → Zero in B- polarization
- Adjust phase to move

low power RF test: B- "contour plot."

Trapping Results

- \triangleright Transverse-xy trap: RF AC Zeeman.
 - RF power: 200-400 mW at 20 MHz
- > Axial-z trap: Laser endcapping.

Trapping Results

- \triangleright Transverse-xy trap: RF AC Zeeman.
 - → RF power: 200-400 mW at 20 MHz
- > Axial-z trap: Laser endcapping.
- First trap for F=2, $m_F=-2$ (lifetime ~ 0.5 s)

Trapping Results

- \triangleright Transverse-xy trap: RF AC Zeeman.
 - RF power: 200-400 mW at 20 MHz
- > Axial-z trap: Laser endcapping.
- First trap for F=2, $m_F=-2$ (lifetime ~ 0.5 s)
- \triangleright First trap for F=1, m_F=+1

Summary

- Ultracold atom technology.
- Spin-dependent traps & interferometry.

- What's next? → Is ACZ trap roughness suppressed?
 - → Build microwave atom chip.
 with Virginia Commonwealth U. (V. Avrutin)
 - → Test microwave trap & lattice.
 - > Trapped atom interferometry.

WILLIAM & MARY

Ultra-cold atoms group

W. Miyahira

M. Logsdon

S. Shanmugadas

C. Sturner

J. Shields

R. Burns

S. Rosene

Microwave Lattice

axial confinement & positioning

- detuning $\delta = 2\pi \times 1 \text{ MHz}$
- Axial confinement $\omega_z = 2\pi \times 30 \text{ Hz}$

The problem with fermions

BEC beamsplitting $|\psi\rangle = \left(|atom\rangle_{left} + e^{i\varphi}|atom\rangle_{right}\right)^{W}$

[Thywissen group, U. of Toronto]

$$\varphi_0 = \varphi_1 = \dots = \varphi_{N-1} \rightarrow \text{interference fringes!}$$

 $\phi_0 \neq \phi_1 \neq \dots \neq \phi_{N-1} \rightarrow interference washed out!$

Sensitivity Estimates (optimistic)

Quantum projection noise limited (no spin-squeezing).

> Atom: 87Rb.

	gravimetry	<u>sub-mm</u>	<u>Casimir-</u>
		gravity	<u>Polder</u>
Description	Measurement of local gravity <i>g</i> .	Measurement of gravity at 50 µm from a 2 mm iridium sphere.	Force measurement at 20 µm from fused silica surface (300 K).
atom number: N	10 ⁵	10 ⁵	10 ⁵
arm separation: Δl	1 mm	100 μm	20 μm
phase int. time: Δt	1 s	10 s	1 s
acc. phase: ϕ (rads)	1.4×10 ⁷	7.2×10 ⁻³	0.029
Sensitivity (per exp. cycle)	2×10 ⁻¹⁰ g	S/N ~ 2	S/N ~ 9

Spin- "charge" separation (1D gas)

1D ultracold quantum gas

Spin-specific traps allow independent control of n_{\uparrow} and n_{\downarrow} excitations:

single-particle physics

spin-"charge" separation physics spin or "charge" excitation depends on arrival phase of n_{\uparrow} and n_{\downarrow} excitations

AC vs. DC Potential Roughness

<u>Bump</u>

 $2.5~\mu m$ deviation over $50~\mu m$ length.

<u>Traps</u>

DC and RF traps have identical trapping frequency: 2.5 kHz

DC and RF traps are both 100 µm above their central wire.

Order of magnitude suppression of roughness !!!