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Overview

The questions in this problem set examine the role of internal symmetries in (free) scalar field
theories, gives you more practice at formal manipulation of quantum fields. There is one ques-
tion.

Question 1 [20]

Recall the complex scalar field that we studied in Problem Set 5, defined by the Lagrangian
density

L = ∂µφ
∗∂µφ−m2φ∗φ.

(a) Show that the Lagrangian density of this theory is invariant under the transformations

φ(x)→ eiαφ(x), φ∗(x)→ e−iαφ∗,

where α is a real-valued constant. This symmetry is, in fact, the symmetry that generates the
conserved charge that we examined in Problem Set 5,

Q = i

2

∫
d3~x (φ∗π∗ − πφ) .

(b) Show that the Lagrangian density is also invariant under charge-conjugation, which is defined
to act on the fields as

Cφ(x)C−1 = ηCφ
∗(x).

Here C is a unitary operator that leaves the free-field vacuum invariant, C|0〉 = |0〉, and ηC is an
arbitrary phase with unit normalisation, |ηC |2 = 1.

(c) Show that
Ca(~p)C−1 = ηCb(~p), and Cb(~p)C−1 = η∗Ca(~p).

Use these results to explain how we interpret the effect of charge conjugation on particles and
antiparticles. Is there a conserved quantity associated with the invariance of the Lagrange density
under charge conjugation (explain your answer!)?

(d) Consider now the case of two complex fields, both with the same mass. Denote these fields by
φa, where a ∈ {1, 2}. Use the definition of a conserved charge, Q, in terms of a conserved current,
jµ,

Q =
∫

d3~x j0(~x, t), where jµ = ∂L
∂(∂µφa)

δφa
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to show that there are four conserved currents, given by

Q = i

2

∫
d3~x (φ∗aπ∗a − πaφa) , (1)

Qi = i

2

∫
d3~x

(
φ∗a(σi)abπ∗b − πa(σi)abφb

)
. (2)

Here i ∈ {1, 2, 3} and the σi are the 2×2 Pauli sigma matrices. These matrices are the generators
of SU(2), which is the symmetry group of angular momentum and particle spin (in other words,
these Pauli sigma matrices have the same commutation relations as angular momentum operators).
Note that the overall sign and constant are chosen to match the single field case.

[Hint: you will first need to think about what transformation leaves this Lagrangian density
invariant.]

Solution 1

(a) We apply the transformation to the fields and define

Φ(∗) = e(−)iαφ(∗), and L′ = ∂µΦ∗∂µΦ−m2Φ∗Φ.

Then

L′ = ∂µΦ∗∂µΦ−m2Φ∗Φ
= ∂µe

−iαφ∗∂µeiαφ−m2e−iαφ∗eiαφ

= e−iαeiα
(
∂µφ

∗∂µφ−m2φ∗φ
)

= L.

(b) Now define L′ as the charge-conjugated Lagrangian

L′ = CLC−1

= ∂µCφ∗C−1C∂µφC−1 −m2Cφ∗C−1CφC−1

= ∂µη
∗
Cφ∂

µηCφ
∗ −m2η∗CφηCφ

∗

= η∗CηC
(
∂µφ

∗∂µφ−m2φ∗φ
)

= L.

Here we’ve used |ηC |2 = 1.

(c) We first write the creation and annihilation operators in terms of the fields, as

a(~p) = − i

(2π)3√Ep
∫

d3~x
(
iEpφ(~x)− ∂0φ(~x)

)
e−i~p·~x

b(~p) = − i

(2π)3√Ep
∫

d3~x
(
iEpφ

∗(~x)− ∂0φ
∗(~x)

)
e−i~p·~x.
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Then

Ca(~p)C−1 = − i

(2π)3√Ep
∫

d3~x
(
iEpCφ(~x)C−1 − ∂0Cφ(~x)C−1

)
e−i~p·~x

= − i

(2π)3√Ep
∫

d3~x
(
iEpηCφ

∗(~x)− ∂0ηCφ
∗(~x)

)
e−i~p·~x

= ηCb(~p),

and

Cb(~p)C−1 = − i

(2π)3√Ep
∫

d3~x
(
iEpCφ∗(~x)C−1 − ∂0Cφ∗(~x)C−1

)
e−i~p·~x

= − i

(2π)3√Ep
∫

d3~x
(
iEpη

∗
Cφ(~x)− ∂0η

∗
Cφ(~x)

)
e−i~p·~x

= η∗Ca(~p).

Then by complex conjugation of these results, we obtain

Ca†(~p)C−1 = η∗Cb
†(~p),

Cb†(~p)C−1 = ηCa
†(~p).

If we denote a state of charge q and momentum ~p as |q; ~p〉, then we have

C|q; ~p〉 = Ca(~p)|0〉 = Ca(~p)C−1C|0〉 = η∗Cb
†(~p)|0〉 = η∗C | − q, ~p〉.

Thus charge conjugation turns a particle into an antiparticle. Similar arguments show that charge
conjugation also turns antiparticles into a particle.

There is no conserved current associated with charge conjugation, because it is a discrete symmetry
and Noether’s theorem applies to continuous symmetries.

(d) For the case of two complex fields, the Lagrangian density is given by

L = ∂µφ
∗
a∂

µφa −m2φ†aφa,

where a ∈ {1, 2} labels the “species” of particle.

The Lagrangian density for the single particle case was invariant under a complex phase rotation,
which is a U(1) symmetry. With two particles, the Lagrangian density is symmetric under U(2)
symmetry, φa → Uabφb. The U(2) group is of dimension four, so is spanned by four generators,
which can be chosen to be the SU(2) Pauli matrices and the identity. So, for example,

φa → Uabφb = e−iτab/2φb,

so that
δφa = − i2τabφb.

Note that the Pauli matrices are Hermitian.
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Then the conserved currents are given by

jµ = ∂L
∂(∂µφa)

δφa + ∂L
∂(∂µφ∗a)

δφ∗a

= ∂µφ
∗
a(−iφa) + ∂µφa(iφ∗a)

for transformation under the identity, and

jµ,i = ∂L
∂(∂µφa)

δiφa + ∂L
∂(∂µφ∗a)

δiφ∗a

= ∂µφ
∗
a

(
− i2σ

i
abφb

)
+ ∂µφa

(
i

2σ
i
abφ
∗
b

)
.

Then the corresponding conserved currents are

Q =
∫

d3~x j0

= i

∫
d3~x

(
φ̇aφ

∗
a − φ̇∗aφa

)
= i

∫
d3~x (π∗aφ∗a − πaφa)

and

Qi =
∫

d3~x j0,i

= i

2

∫
d3~x

(
φ̇aσ

i
abφ
∗
b − φ̇∗aσiabφb

)
= i

2

∫
d3~x

(
π∗aσ

i
abφ
∗
b − πaσiabφb

)
.

Under the assumption that these operators are normal ordered, we can write them as

Q = i

2

∫
d3~x (φ∗aπ∗a − πaφa) ,

Qi = i

2

∫
d3~x

(
φ∗a(σi)abπ∗b − πa(σi)abφb

)
.
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